Langsung ke konten utama

heat transfer through plane walls

A. INTRODUCTION

A heat transfer situation in which time is not a factor is designed as steady state. The consideration of heat transfer where time is not considered afford some simplification in the analysis. The governing equation for steady state conduction with internal generation is(Welty, 1978 and Holman, 1989)

V2T + = 0 ………………………………………………………(1)

Where :

VT : temperature gradient in vector form

q : heat flow vector

k : thermal conductivity vector

which is known as the Poisson equation, and for steady – state conduction without internal generation of heat, the Laplace equation applies :

V2T = 0 ……………………………………………………………...(2)

Both of the above equation apply to an isotropic medium, that is, one whose properties do not vary with direction, physical properties are also presumed independent of temperature.

The initial consideration is one – dimensional steady – state conduction without internal generation of energy. As just discussed. The Laplace equation applies to this case. A general form of Laplace equation in one dimension is:

= 0 …………………………………………………..(3)

Where

x : critical geometry in the direction of heat transfer, m

: temperature gradient a long x axis

: 0, 1, or 2 in rectangular, cylindrical, and spherical coordinate respectively

Plane Walls

In the case of he plane wall as shown in figure 1, equation (3) with i = 0 applies.

The equation and boundary conditions to be satisfied are

= 0…………………………………………………………………(4)

T(x) = T(0) = T0 at x = 0

T(x) = T(L) = TL at x = L

Where

To : temperature at x = 0, K

TL : temperature at x = L, K

Equation (4) may be separated and integrated twice to yield

T(x) = c1x + c2 …………………………………………………………(5)

And the constants of integration c1 and c2 evaluated, by applying the boundary equation, to be

c1 = and c2 = T0

When c1 and c2 are substituted into equation (5), the final expression for the temperature profile becomes

T(x) =

T(x) = ………………………………………………………….(6)

According to equation (6), the temperature variation in a plane wall under the condition specified is linear as shown in Figure 1.

The Fourier rate equation may be used to determined heat flux of heat flow rate in this case. The equation is repeated below, in scalar form in reference

qx = …………………………………………………………...(7)

where

qx : heat flux, W/m2

A : cross section area, m2

k : thermal conductivity, W/m K

Since, in the steady- state case, q, is constant, this equation may be separated and integrated directly as

giving

………………………………………………..(8)

Alternately, the temperature gradient dT/dx could been evaluated from equation (6) and substituted into equation (7) to achieve the identical result. These two alternate means of evaluating heat flux, either by direct integration of the Fourier rate equation or by- solving for temperature and substituting the temperature gradient expression into the rate equation, are both employed in subsequent examples. One approach may be simpler than another in certain case, but no general statement can be made in this regard.

The quantity kA/L, in equation (8), is the thermal conductance for a flat plate or wall. The reciprocal of this quantity, L/kA, is designated the thermal resistance.

B. OBJECTIVES

1. To assess the characteristic of the steady state heat transfer though the plane wall

2. To determine the rate of steady state heat transfer through the plane wall

C. MATERIALS AND EQUIPMENTS

Material are plane walls made out of aluminium. The setup of the experiment is illustrated in fig 2 comprises of Hybrid Recorder Yokogawa DR 130, a water bath at 1000C and thermocouples. Eleven observation point are inserted into the aluminium block and the distance between two observation points are 0.01 m

D. METHODS

1. Record the initial temperature at the observation point located as described in Fig 2

2. Pour boiling water at 100 0C into the water both until the water surface reaches the height of the aluminium plane wall. Maintain the water at a constant temperature.

3. Record the temperature developed at the observation point in the interval of two minutes

E. RESULT AND DISCUSSION

Result from data experiment

Table 1

No

x/T

T0

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

1

0

71,7

40,3

30,6

28,8

27,9

27,2

26,6

26,4

26,3

26,4

80,6

2

2

76,3

51,2

36,9

33,7

31,9

30,2

27,9

27

26,7

26,5

80,8

3

4

80

59,2

44,3

40,4

38,3

35,8

31,5

29,1

28,2

27,6

82,1

4

6

82,7

63,9

49,8

45,8

45,7

40,7

35,6

32,2

31

30

85,3

5

8

85,1

67,1

53,6

49,8

47,7

44,7

39,2

35,3

33,8

32,5

89,8

6

10

87,3

70,1

57

53,2

51,4

48,3

42,7

38,6

36,8

35,5

92,7

7

12

89,4

73,3

60,7

57

55,4

52,3

48,7

42,5

40,7

39,2

94,7

8

14

90,8

75,5

63,5

59,9

58,6

55,5

50

45,8

43,9

42,4

95,2

9

16

92,6

78,1

66,6

63,2

62

58,9

53,6

49,5

47,7

46

96,9

10

18

95

80,7

69,2

65,9

64,7

61,7

56,5

52,4

50,7

48,9

98,8

11

20

96,1

83,4

72,3

68,9

67,8

64,9

59,6

55,8

54

52,3

99,5

12

22

96,2

84,6

74,2

71

70,1

67,2

62,1

58,3

56,7

54,9

99,6

13

24

96,2

85,7

76,1

73,3

72,6

69,7

65

61,3

59,7

58

99,5

14

26

95,9

86

77,3

74,7

74,2

71,5

67

63,6

62,1

60,3

99,5

15

28

95,9

86,7

78,4

75,9

75,7

73,1

68,8

65,6

64,2

62,4

99,5

16

30

95,9

87,3

79,5

77,2

77,7

74,7

70,8

67,6

66,3

64,6

99,5

17

32

96,2

88,2

80,6

78,3

78,4

76

72,5

69,6

68,4

66,7

99,5

18

34

96,1

88,6

81,5

79,2

79,4

77

73,4

70,8

69,7

68,1

99,5

19

36

96

88,7

82

80

80,3

78,1

74,8

72,1

71

69,3

99,5

20

38

96,1

89

82,6

87

81,1

78,9

75,7

73,2

72,1

70,5

99,5

21

40

96,1

89,3

83,3

81,4

81,8

79,5

76,6

74,2

73,2

71,5

99,5

22

42

96,2

89,6

83,5

81,7

82,3

80,2

77,3

75

74,1

72,6

99,5

23

44

96

89,6

84

82,2

82,8

80,7

78

75,7

74,8

73,2

99,5

24

46

95,9

89,6

84,2

82,7

83,4

81,2

78,3

76,2

75,3

73,7

99,5

25

48

96,3

90,2

84,6

82,9

83,6

81,5

78,9

76,7

75,9

74,2

99,5

26

50

96,1

90,2

84,8

83,1

83,9

81,9

79,1

77,1

76,4

74,7

99,5

27

52

96,1

90,4

85,1

83,6

84,3

82,3

79,8

77,7

76,9

75,3

99,5

28

54

96,1

89,9

85,1

83,7

84,6

82,6

80,1

78,1

77,4

75,7

99,5

29

56

95,8

90,3

85,3

83,9

84,7

82,7

80,4

78,4

77,7

76,2

99,5

30

58

96,1

90,6

85,5

83,8

84,8

82,7

80,4

78,6

78

76,4

99,5

31

60

96,1

90,8

85,7

84,3

85,1

83,2

80,8

78,9

78,1

76,5

99,5

Table 2

No

q/A

T0

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

1

22250

80,6

79,71

78,82

77,93

77,04

76,15

75,26

74,37

73,48

72,59

71,7

2

11250

80,8

80,35

79,9

79,45

79

78,55

78,1

77,65

77,2

76,75

76,3

3

5250

82,1

81,89

81,68

81,47

81,26

81,05

80,84

80,63

80,42

80,21

80

4

6500

85,3

85,04

84,78

84,52

84,26

84

83,74

83,48

83,22

82,96

82,7

5

11750

89,8

89,33

88,86

88,39

87,92

87,45

86,98

86,51

86,04

85,57

85,1

6

13500

92,7

92,16

91,62

91,08

90,54

90

89,46

88,92

88,38

87,84

87,3

7

13250

94,7

94,17

93,64

93,11

92,58

92,05

91,52

90,99

90,46

89,93

89,4

8

11000

95,2

94,76

94,32

93,88

93,44

93

92,56

92,12

91,68

91,24

90,8

9

10750

96,9

96,47

96,04

95,61

95,18

94,75

94,32

93,89

93,46

93,03

92,6

10

9500

98,8

98,42

98,04

97,66

97,28

96,9

96,52

96,14

95,76

95,38

95

11

8500

99,5

99,16

98,82

98,48

98,14

97,8

97,46

97,12

96,78

96,44

96,1

12

8500

99,6

99,26

98,92

98,58

98,24

97,9

97,56

97,22

96,88

96,54

96,2

13

8250

99,5

99,17

98,84

98,51

98,18

97,85

97,52

97,19

96,86

96,53

96,2

14

9000

99,5

99,14

98,78

98,42

98,06

97,7

97,34

96,98

96,62

96,26

95,9

15

9000

99,5

99,14

98,78

98,42

98,06

97,7

97,34

96,98

96,62

96,26

95,9

16

9000

99,5

99,14

98,78

98,42

98,06

97,7

97,34

96,98

96,62

96,26

95,9

17

8250

99,5

99,17

98,84

98,51

98,18

97,85

97,52

97,19

96,86

96,53

96,2

18

8500

99,5

99,16

98,82

98,48

98,14

97,8

97,46

97,12

96,78

96,44

96,1

19

8750

99,5

99,15

98,8

98,45

98,1

97,75

97,4

97,05

96,7

96,35

96

20

8500

99,5

99,16

98,82

98,48

98,14

97,8

97,46

97,12

96,78

96,44

96,1

21

8500

99,5

99,16

98,82

98,48

98,14

97,8

97,46

97,12

96,78

96,44

96,1

22

8250

99,5

99,17

98,84

98,51

98,18

97,85

97,52

97,19

96,86

96,53

96,2

23

8750

99,5

99,15

98,8

98,45

98,1

97,75

97,4

97,05

96,7

96,35

96

24

9000

99,5

99,14

98,78

98,42

98,06

97,7

97,34

96,98

96,62

96,26

95,9

25

8000

99,5

99,18

98,86

98,54

98,22

97,9

97,58

97,26

96,94

96,62

96,3

26

8500

99,5

99,16

98,82

98,48

98,14

97,8

97,46

97,12

96,78

96,44

96,1

27

8500

99,5

99,16

98,82

98,48

98,14

97,8

97,46

97,12

96,78

96,44

96,1

28

8500

99,5

99,16

98,82

98,48

98,14

97,8

97,46

97,12

96,78

96,44

96,1

29

9250

99,5

99,13

98,76

98,39

98,02

97,65

97,28

96,91

96,54

96,17

95,8

30

8500

99,5

99,16

98,82

98,48

98,14

97,8

97,46

97,12

96,78

96,44

96,1

31

8500

99,5

99,16

98,82

98,48

98,14

97,8

97,46

97,12

96,78

96,44

96,1

Contoh Perhitungan:

-

-

(untuk T1=0,01 m) (untuk T2=0,02 m)

(untuk interval menit ke-0)

- (untuk interval menit ke-2)

F. DISCUSSION

From this experiment we want to know about the heat transfer trough plane walls. If we see from first table, the temperature T0 until T10 increase linearly, because T10 is directly contact between the cable and water, so T10 is the highest among the others temperatures. On the other hand, in the second table we changed T10 and T0, so the highest temperature is T0. Then, T1 until T9 are gotten from the calculation that the formula is given from the laboratory manual.

As we seen in the graphic relation between thickness and temperature and graphic relation between flux and time, they all relatively getting down and down in several time. It means that the thickness of material can involve the temperature too if we heat the material. The outer surface will be colder than the inside. It’s all because of the temperature is absorb by every section. So, the heat will get down and down. The data from Hybrid Recorder Yokogawa DR 130 is different with the data from calculation.

G. CONCLUSION

From this experiment we can conclude that the students have understood about the heat transsfer through plane walls. It can be looked from the data and the result of the laboratory work.

H. REFERENCES

Holman, J.P. 1997. Heat Transfer. McGraw Hill Book Co., Singapore

Welty, J.R. 1978. Engineering Heat Transfer. John Wiley & Sons, New York, N.Y. USA


Laboratory Work Result Wednesday, March 24th 2010

Thermodynamic and Heat Transfer Energy and Electrification of

Ahricultural Laboratory

CONDUCTION HEAT TRANSFER THROUGH PLANE WALLS

By :

Ahmad Eriska Dwi Hutama Putra

F14080122

IPB2

DEPARTEMENT OF AGRICULTURAL ENGINEERING

FACULTY OF AGRICULTURAL TECHNOLOGY

BOGOR AGRICULTURE UNIVERSITY

2010

Komentar

  1. Sputal nail pads for men in Tuscany - Titanium Dogs
    Sputal titanium septum ring nail pads for men in Tuscany. Tuscany - titanium armor titanium dog teeth are soft, soft, and smith titanium made titanium car from premium platinum, natural and titanium i phone case durable

    BalasHapus

Posting Komentar

Postingan populer dari blog ini

Maintenance System

Maintenance , main-tenis, main-tenan dan beberapa istilah lainnya yang sering kita dengar. Semua istilah tersebut punya arti dan fungsi yang berbeda tergantung dari profesi yang mana yang mengartikan, tapi sebenarnya tujuan nya adalah sama. Kenapa saya mau bahas si Maintenance ini??? Biar ga bingung dan sebelum bahas maintenance saya mau jelasin terlebih dahulu tempat saya bekerja - Perusahaan yang bergerak di bidang perkebunan dan penghasil CPO ( Crude Palm Oil ) atau biasa kita sebut minyak keapa sawit-. CPO?? Iya CPO itu asalnya dari kelapa sawit yang diolah dan menghasilkan beberapa produk turunan seperti sabun mandi, sabun cuci, kosmetik, margarin, minyak goreng, dll. Di perusahaan tempat saya bekerja terdapat 5 divisi utama, diantaranya Tanaman, Pabrik, Teknik, Administrasi, dan SHE ( Safety Health and Environment ). Kebetulan saya berada di divisi Teknik/Engineering yang sangat berkaitan dengan maintenance system yang sebentar lagi akan saya bahas. Maintenance se

UJI TEKAN PADA KAYU

I. Pendahuluan A. Latar Belakang Dalam dunia teknik mengetahui tentang sifat-sifat mekanik suatu bahan yang ingin digunakan untuk konstruksi sangat penting. Dengan mengetahui sifat-sifat mekanik maupun fisik kita dapat memastikan fungsi spesifik dari suatu bahan dan kita bisa mengetahui bahan tersebut cocok digunakan untuk bidang tertentu. Karena setiap bahan memiliki sifat-sifat mekanik dan fisik yang berbeda maka pengetahuan tentang sifat-sifat ini adalah hal yang mutlak untuk diketahui oleh seorang sarjana teknik. Dalam praktikum ini kita akan mengetahui tentang salah satu sifat mekanik bahan kayu, khususnya sifat kekuatan tekan sejajar serat. Dimana pada hasil akhirnya kita dapat mengetahui kekuatan tekan ijin dari suatu bahan yang kita uji. B. Tujuan · Mempelajari sifat mekanik kayu. · Melakukan pengujian sifat mekanik kayu (uji tekan). · Menentukan kelas kuat kayu yang diuji. · Mengetahui faktor-fa

Teaser - Tanjung Puting National Park #Orangutantrip